
K. K L E P P  A N D  E. PARTHl~ 

Table 2. Enumeration of  the number of  stacking variants for N = 12 

Percentage of hexagonal stacking 0 16.67 33.33 50 66.67 83.33 100 

Number of solutions obtained from P61ya's (1937) 
Hauptsatz 1 6 29 50 29 6 1 

Number of solutions for divisors of 12 to be subtracted 
N = 6  3 2 
N = 4  2 
N - 3  1 
N = 2  1 
N - 1  1 

Number of stacking variants for N = 12 0 6 26 48 26 6 0 
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\, (12): l l2 

with the special solutions 

a2(N) = ( N -  1)/2 and aN_, (N ) = 1. 

For example, for N = 11 one obtains for N h = 2, 4, 6, 8 
and 10 the values 5, 20, 26, 10 and I. The sum ~ (11) = 
62 is again in agreement with International Tables for  
X-ray Crystallography ( 1967). 

If N is a prime number  and N _> 3 the total number  of  
stacking variants is given by 

2(N-1)/2(2 (N-I)/2 + N) -- (N + 1) 
Z ( N )  = (9) 

2N 
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Abstract 

A systematic convergence test for constrained rigid- 
body least-squares refinement shows good possibility of 
convergence towards the right solution, even starting 
from strongly misplaced molecular models (trans- 
lations of  about 1.5 A and rotat ions of about 30°), if an 
appropriate sequence of reflections and strategy is used. 
Consequently,  a routine for solving structures with a 
known molecular model by ab initio least-squares 

0567-7394/81/010065-07501.00 

refinement has been written, and successfully tested 
with three unknown structures: inclusion of second 
derivatives has also been tested, with a view to 
improving the method. In all cases so far examined, the 
routine is very fast, simple to use and competitive with 
usual methods, even when the model is only approxi- 
mately known. The inclusion of second derivatives as 
such is not convenient,  at least if precautions are not 
taken to reach a true minimum: a possible way of 
further improvement is discussed. 

(¢~ 1981 International Union of Crystallography 
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Introduction Convergence tests for known structures 

In recent years, a considerable development of different 
techniques of constrained least-squares refinement has 
taken place (Pawley, 1970; Diamond, 1971; Birktoft & 
Blow, 1972; Bianchi, Pilati & Simonetta, 1978a,b). 
Some of these methods essentially imply rigid-body or 
segmented-rigid-body molecular models, and their 
substantial success derives from a drastic reduction of 
the number of parameters to be dealt with. In many 
cases, when the molecule is indeed rigid, a constrained 
refinement might lead to results which are more 
significant than the corresponding results from conven- 
tional least-squares refinement (see, for instance, 
Scheringer, 1963; Pawley, 1972; Bianchi, Destro, Pilati 
& Simonetta, 1979). 

Apart from final refinement of crystal structures, one 
might consider a practical use of these techniques for 
determining the approximate position and orientation of 
molecules or molecular fragments of known geometry, 
and therefore essentially solving the phase problem. In 
fact, in our experience the application of conventional 
least-squares refinement at a very early stage was often 
successful, provided a reasonable limitation of sin 0/2 
was considered; in some cases, atomic shifts even 
greater than 1 A were involved (Gramaccioli, Destro & 
Simonetta, 1968). However, some quite obvious 
difficulties arise if one wants to refine a random 
structure (Booth, 1947, 1949; Lenstra, 1974; Wilson 
1977). Since with a constrained model the number of 
degrees of freedom is drastically reduced, the possibility 
of converging to the correct structure can be expected 
to be substantially higher than for an unconstrained 
case. Moreover, since the number of parameters is 
considerably smaller, we can start with an extremely 
limited number of reflexions (e.g. six reflexions only for 
a rigid-body molecule). These reflexions, provided some 
obvious rules are respected, can be chosen with the 
smallest possible magnitude of the scattering vector h, 
so that the probability of converging to the right 
solution is further increased. Since low-angle reflexions 
are not particularly sensitive to the molecular shape 
(and, to a certain extent, also to orientation; see below), 
the possibility of solution is practically unaffected by 
inadequacies of the proposed molecular model, pro- 
vided, of course, they are not too large. 

Starting from these considerations, in view of the 
dramatic possibility of convergence of this procedure, 
an examination of the convergence radius for con- 
strained least-squares refinement in several practical 
cases was thought to be useful. Furthermore, a 
possible extension was considered to obtain a reason- 
able method for solving unknown crystal structures 
with a molecular model at least partially known; such a 
method, if successful, might be an alternative to a 
systematic search of the Patterson function, or similar 
procedures. 

A preliminary convergence test was carried out 
for four structures of molecular crystals which had 
been solved in this laboratory, i.e. 11,11-difluoro- 1,6- 
methano[ 10lannulene, or DIF (Gramaccioli 
& Simonetta, 1971; Pilati & Simonetta, 1976); 
sym-dibenzo-l,5-cyclooctadiene-3,7-diyne, or DINO 
(Destro, Pilati & Simonetta, 1977); syn-5,7- 
diformyltricyclo[ 9.4.1.13.9 lheptadeca-2,4,7,9,11,13,15- 
heptaene, or DIAL (Pilati & Simonetta, 1977), and 
2,4,6-trinitrophenetole or TNPE (Gramaccioli, Destro 
& Simonetta, 1968). The first three structures were 
chosen because of the relative simplicity and regularity 
of their rigid models (with an increasing complexity 
from DIF to DIAL); the last one was chosen in view of 
the possibility of encountering false minima due to 
misorientation of the groups attached to the benzene 
ring, and relative pseudosymmetry. Unit-cell data of 
these substances are reported in Table 1. 

Results from the convergence tests are reported in 
Table 2. For each run, a systematic series of starting 
points was chosen, each of them derived by shifting and 
rotating the molecule, as found in the structure. The 
direction of these shifts was taken in either sense along 
all the crystallographic axes and their principal 
diagonals, such as I1011, II101, II111 (when a 
structure is polar obviously no shift component along 
the polar axes is considered): the magnitudes of these 
shifts are reported (as Aw t) in the seventh column of 
Table 2. 

The rotations have been made in either sense by a 
certain angle (indicated as AO t in the eighth column of 
Table 2), around each principal axis of inertia. This 
virtually covers an extensive range around the solution; 
the number of starting points so obtained (six pos- 
sibilities of rotation ×26 possibilities of translation = 
156 in a general case, or only 48 for a crystal with a 
polar axis) is reported in the ninth column of Table 2. 

An essential difficulty for this kind of test consists in 
verifying whether a certain situation indeed converges 
towards the right solution. Apart from the usual 
problem of recognizing if one of the symmetrically 
equivalent solutions in the Cheshire group (Hirshfeld, 
1968) is emerging, this difficulty is especially evident at 
the starting point, when often six reflexions only are 
dealt with (Nmi n in Table 2). Here, in fact, too few 
phases are available, and no details are apparent in the 
refined model. For this purpose, after a virtual 
convergence has been reached with a certain set of 
reflexions, some more must be added. This can be done 
by increasing the maximum length of the scattering 
vector h, until a sufficient number of data is included for 
a good characterization of the result. 

This expansion is rather a delicate point, because if it 
is made too rapidly the solution may be lost. Our 
procedure is as follows: after convergence has been 
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attained for a certain set of s reflexions, the set is 
expanded to a number r . s  of reflexions and so on, until 
the maximum number of reflexions (Nmax) is reached. 
For all the cases here treated Nma x is the number of 
reflexions for which I hl 2 A-< a~ax;  akmax has been chosen 
between 0.035 and 0.05 - A reasonable value (r = 
3) was assigned to the expansion factor, except after the 
first series of cycles, where r is set to 2 for additional 
caution. During the first series of cycles, i.e. when 
dealing with the initial number of reflexions, the 
possibility of refining the translational parameters only 
(L -- 1 in Table 2), or both rotational and translational 
parameters (L = 2) was considered. Scale and overall 
temperature factors were kept fixed at the correspond- 
ing values obtained from a Wilson (1942) plot. 

After each cycle, the refinement was continued or not 
with the same set of data, depending on the results of 
certain tests. First of all, the usual exit, for a 
well-behaved case, is that the value of S~k, i.e. the 
residual function after the j th  cycle, becomes practically 

stationary. For this purpose, convergence was declared 

if G = I (SJn , -  St~cld/aS ~ Is,<Oh0Ol_ • .Igu~c~meCu~eSinW e 
noticed strong }1 
virtual loop. An exit for these situations was provided 
by testing whether for every parameter/fl~ of the j t h  
cycle I Ap~ ÷ ApJ~+'l did not exceed a certain amount 
(here 0 . 0 2 5 A o r  rad): in practice, this test almost 
coincides with testing G in many instances, but it stops 
oscillations if there are any. In all cases, a maximum 
number of cycles (here usually 12) was permitted with 
the same set of data. 

After each exit, of whatever nature, expansion to the 
next, larger set of reflexions took place, because we saw 
that in a good number of instances a solution could be 
reached even in this way. 

During this kind of refinement, in some cases large 
shifts may occur. This might indicate a meaningless 
solution; on the other hand, owing to the particular ease 
of convergence of the process, a large shift, although 
meaningless, often has the effect of displacing the 

Symbol 

Formula 

Space group 

a (A) 
b 
C 
~(o) 
Z 

Table 1. Known structures on which convergence tests have been made 

DIF DINO DIAL 

C,,H8F 2 C 16H8 C 19 H1602 

Pna2, 

9.111 
13.203 
6.981 

1/ 0 

P21/n P2t/n 

6.148 13.305 
11-839 9.254 
14.033 11.371 
91.02 95.89 

4 4 

TNPE 

C8HTN307 

OzN ~NOz 

y "OC2H~ 
NO2 
Pca 2, 

23.785 
7.358 
6.264 

Table 2. Results o f  convergence tests on known structures 

The asterisk in the ninth column means a preliminary screening of the starting points based on packing (see text) was made. 

Area x Aw t AO t Starting 
Run Structure Nml . Nm, x L (A, rad) (A) (o) points Solutions 

1 D I F  6 67 2 - 1.00 30 48 36 (40) 
2 DIF 6 67 2 - 1.25 30 48 30 (38) 
3 DIF 6 67 2 - 1.50 30 48 23 (31) 
4 DIF 6 67 1 - 1.50 45 30* 20 (23) 
5 DIF 6 67 1 - 1.75 45 42* 32 (36) 
6 DIF 6 67 2 - 1.50 45 30* 12 (19) 
7 DIF 6 67 2 - 1.75 45 38* 21 (27) 
8 DIF 6 104 1 0-5 1.50 45 48 15 
9 DINO 7 99 2 - 1.00 30 156 78 (116) 

10 DINO 7 99 1 - 1.50 30 114" 23 (67) 
11 D I N O  7 99 2 - 1 .50  30 114" 40 (67) 
12 D I N O  7 150 1 1.0 1 .50  45 108" 36 
13 DINO 7 128 1 0.5 1.50 45 144" 88 
14 DIAL 7 147 1 0.5 1.50 45 72* 38 
15 TNPE 6 144 1 0.5 1.50 30 30* 25 
16 TNPE 6 144 1 0.5 1.50 45 30* 5 
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molecular model from a bad point towards a more 
promising region, and a way out of a possible i m p a s s e  
is consequently provided. Owing to this possibility, and 
to the very short computing time, in most cases the 
refinement was continued, utilizing these shifts as they 
came out. In the remaining cases, the refinement was 
also continued, but the shifts were cut down to a 
maximum permitted value (Ama x in Table 2). This 
means that whenever any shift IAw~l or IA0~I exceeded 
this value, it was replaced by a new shift Aw "j = Area x 
x Awf f lAwJn l ,  or AO~/ = AmaxAOfflAOJnl , i.e. the 
direction, sense, and the rotation axis were maintained. 

In the last column of Table 2, the number of times a 
solution was reached is reported for each run. Two 
different criteria can be used for deciding whether or 
not a true solution is obtained (when, of course, a 
sufficient number of reflexions has been included in the 
refinement): the first involves a subsequent least- 
squares refinement, including all the data and final 
weights used in the paper from which the structure has 
been taken, and checking whether the final coordinates 
(or their Cheshire group symmetrically equivalent) are 
obtained. This criterion is obviously tedious and 
expensive, and for this reason it was used only partially 
in our tests (in Table 2, the numbers between 
parentheses in the last column were evaluated in this 
way). A second faster, although much more restrictive, 
criterion is to check the phase angle assigned to all the 
reflexions in the final set for which F _> Fmax/5, where 
F,,ax is the highest F. The situation was considered to be 
satisfactory when any single phase error was < 25 o: the 
numbers reported in the last column of Table 2 without 
parentheses were evaluated in this manner. 

Even at a first glance, the results seem to be quite 
satisfactory. In fact, a considerable number of success- 
ful cases have been obtained even with shifts of the order 
of 1.5 A and rotations of 30 and 45 ° from the correct 
situation. This means that we have a quite good 
possibility of arriving at a correct solution even starting 
from a grid of different points 3 A and 60 ° from each 
other. 

From the data so far obtained, on average it is 
difficult to see a definite advantage in having L = 1, or 
L = 2, i.e. in refining the position only, or also the 
molecular orientation in the first series of cycles. 
Similarly, cutting the shifts or not (see Amax), as we 
have explained, does not seem on average to affect the 
possibility of convergence. Within each single case, 
however, the behaviour can be quite different, and this 
might indicate the possibility of using alternative 
strategies. 

Applications and discussion 

Based mainly on these principles and results, a program 
for solving an unknown crystal structure with a known 

molecular model was written. The mathematical outline 
of the least-squares refinement is given in the Appendix: 
it essentially consists in a segmented-rigid-body routine, 
with an overall temperature factor. This parameter (and 
the scale factor) can be refined only in the last series of 
cycles, i.e. when the number of reflexions is the 
maximum (Nmax). The major difference with respect to 
the usual least-squares routines of this kind lies in 
considering also second derivatives: these have been 
taken care of, with a view to the possibility of further 
improving convergence, and also of testing whether a 
true minimum of the residual function has been 
reached. 

The procedure is as follows: first of all, a grid of 
different starting positions of the molecular centres of 
gravity is chosen; the spacing can be assigned at will (in 
general about 2 A). The origin of the grid can also be 
assigned: for a general case, special positions must be 
avoided, since convergence towards saddle points, 
situated between two symmetrically equivalent 
solutions, may result. In most cases, the packing is 
checked, only in order to make sure that the centres of 
two molecules are farther apart than a certain minimum 
distance (in general, about 4/k); for molecules with a 
particular shape, this distance might be substantially 
raised, thereby resulting in a considerable saving of 
computing time. The extension of the grid is chosen in 
accordance with the requirements of symmetry 
(Cheshire groups and space groups). 

For each point in the grid compatible with packing 
requirements, a structure-factor calculation on a 
minimum number of reflexions (Nmln) is performed, 
starting from a rotational grid of all the possible 
orientations; also for this grid, the spacing can be 
assigned at will (in general, 30°), and the extension is 
chosen depending on the symmetry of the molecular 
model. The reflexions (three only, in general, provided 
their indices are linearly independent) are chosen so 
that the scattering vector is the smallest possible. For 
each point in the translational grid, the orientation 
corresponding to the lowest value of the residuals is 
chosen as a starting point in the least-squares refine- 
ment. At the beginning of the refinement, a set of only 
Nm~ n reflexions is used (or twice as many, if also 
rotations are included in the first cycles, i.e. L = 2), and 
the procedure goes forward just as we have already 
indicated for the convergence tests. 

As when dealing with known structures, some of the 
most delicate problems arise with checking whether a 
true solution has been achieved; since in this case no 
comparison with a set of standard phases can be made, 
only the result of a complete refinement can be taken as 
proof. 

For testing our method, three unknown struc- 
tures have been considered, i.e. 3,5-diformyl- 
bicyclo[5.4.1 ]dodeca-2,5,7,9,11-pentaene (ALD), 1,6- 
methanol l01annulene (MANN) and the p form of 
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Symbol 

Formula 

Space group 
a (A) 
b 
c 
p(o) 
z 

Molecular model 
derived from 

b (A) 
Dma x (A) 

Table 3. Unknown structures solved by our method 

MANN CNME (fl form) ALD 

CIIHIo CI3HIIN C14H1202 

f / /N 

. ~ O 

Fdd2 C2/c Pccn 

33.969 21.316 13.738 
15.112 6.198 13.472 
6.181 15.660 11.658 

107.54 
16 8 8 

DIF CNME (a form) DIAL 

0.221 0.080 0.203 
0.286 0.123 0.320 

Table 4. Results of our method for solving structures 

Computing Computing 
Starting Number of time time/starting 

Run Structure Derivative Nml n Nma x points solutions (C PU s) point(s) 

1 MANN I 3 35 16 3 219 13.7 
2 MANN I, II 3 35 16 1 272 17.0 
3 CNME I 3 90 15 3 150 10.0 
4 CNME I, II 3 90 15 1 229 15.2 
5 CNME I 7 90 15 3 267 17.8 
6 ALD I 3 97 10 3 215 21.5 
7 ALD I, II 3 62 10 0 259 25.9 

11-methyltricyclo[4.4.1.01,6 ]undeca-2,4,7,9-tetraene- 
11-carbonitrile (CNME). A detailed report on the data 
collection, final refinement, geometry and discussion on 
these structures will be reported elsewhere (Bianchi, 
Pilati & Simonetta, 1980a,b,c). Unit-cell data of these 
substances are reported in Table 3. For solving these 
structures, molecular models have been derived from 
DIAL, DIF and the a form of CNME (Bianchi, Pilati 
& Simonetta, 1978a), respectively. Maximum (Dmax) 

and mean (/)) variations of these coordinates (A) be- 
tween the model and the final geometry are given in 
the last rows of Table 3. 

In Table 4, results from application of this procedure 
are reported. The symbols in the third column refer to 
inclusion or not of second derivatives in all cycles of 
least-squares minimization; for all these cases, trans- 
lational and rotational grid spacings are 2 A and 30 °, 
respectively, and corresponding origins of the grids 
were chosen 1/k from each crystal axis. The minimum 
permitted distance between molecular centres in the 
packing test is 4 A; the CPU computing time is referred 
to a medium-fast computer (UNIVAC 1100/80). 

From Table 4, several points are evident. First of all, 
a solution has been achieved for all these structures in a 
very reasonable computing time. This time could be cut 
down considerably (to about 1/3) if some automatic 

tests for recognizing solutions are introduced, since 
(except when dealing with second derivatives) three 
symmetrically equivalent solutions are found in each 
case. A possible procedure for verifying the correctness 
of the solution is: (1) verification of the atom-atom 
non-bonded distances: (2) verification of second 
derivatives to ascertain the real presence of a minimum; 
(3) a reasonable R-factor check. 

Another interesting point to notice is that inclusion of 
second derivatives, in spite of the substantial increase in 
computing time, does not lead to any improvement in 
finding a solution: as a matter of fact, the possibility of 
attaining a solution actually decreases. Such a situation 
is probably connected with the need to verify whether 
the refinement is going towards a real minimum, or to 
some sort of saddle point (or possibly even to a 
maximum). Since, as shown in the Appendix, our 
procedure is essentially a Newton-Raphson 
minimization of the least-squares residual, several 
methods are known to overcome the difficulty of not 
having the second-derivative matrix positive-definite, 
thereby ensuring that a real minimum is reached in 
any case (Goldfield, Quandt & Trotter, 1966). 

At this stage, however, because of the essential 
success of the treatment including first derivatives only, 
we are planning to examine special mathematical 
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methods involving second-derivative treatment only at 
a later stage, for further improving convergence, in view 
of a Monte-Carlo-like procedure for solving structures 
in this way (Niggli & Fehlmann, 1965). 

Assistance and advice by Dr M. Raimondi is 
gratefully acknowledged. 

{h: Ihl < ok}; a k is a prefixed limit for Ih[ at the kth 
iteration in the convergence process: in any case it is 
kept less than an appropriate value am.x; p = {w~, ..., 
WN, 0, , . . . ,  ON }. 

Then our object is the iterative minimization of the 
function S . ,  (p) with respect to p. 

Applying the Newton-Raphson procedure to the 
minimization of (1), one obtains 

APPENDIX 

Let us indicate the sum of the squares of the residuals at 
a certain iteration as: 

Sn,(p) = ~ (Ig-- I~,/K2) 2, (1) 
h E H  k 

where K is the scale factor; I~ is the observed intensity; 
I[, = I Fhl z and Fh, the calculated structure factor, is 

N Mn J 

Fh = A h + iBh = ~. T n ~. dnm E exp (fln~); 
n = l  m = l  j = l  

flnm,/= 2zti[hy. (R n Xnm + W n )  -k- (g j ] ;  

aj = h.tj; h -- (hl,h2,h3) where hi's are the Miller 
indices; hj = hMjD-L Here Mj and tj are the matrix and 
translation vector corresponding to the j th symmetry 
operation {Mjlty}; w. denotes the position in the 
orthogonal A coordinate system of the mass centre of 
the nth molecular fragment; 

R n = R 3 R 2 Rln; 
(! o o t 

R 1 =  cosO~ --sinO ; 

sin 01 cos 0~]  

(cos  00~ 0 - s in  0 ~  

Rn 2=  1 0 / ;  

/ \ s i n 0 2  0 cos0 ,  z 

\ 0 [c°sO~ --sinO~ i )  
. : =  coso  

0 

0~ = (0, ~, 0z., 03,); 0~,, 02, 03 are the rotation angles 
about orthogonal axes x~, x z, x 3 respectively; X,m 
designates the position of the mth atom in the nth 
fragment; D is a transformation matrix to an arbitrary 
orthogonal system; J is the total number of symmetry 
elements; dnm = fnmgnm; fnm and grim are the scattering 
factor and the population parameter of the mth atom in 
the nth fragment, respectively; M. is the total number 
of atoms of the nth fragment; 7". = exp ( - B .  I h 12); B. is 
the temperature factor for the nth fragment; N is the 
total number of fragments in the asymmetric unit; H k = 

[VSnk(p)lp:p~ + Ap[VVrSH~(p)Ip=p~ : O; 

where vVrSuk is the 6N × 6N matrix of second 
derivatives of Snk. Hence, the normal equations may be 
written as 

. Op. ep. 
82 If, Aih~p~:v ] ) ] Ap. 

ap ~ ap. 

= Z Alh IoI~ ] " 
I X  

h~n~ \ OP, ] P=P~' 

(2) 

where/~ = 1 . . . . .  6N; AIh = I~  - -  I~;  

~I~ (A 0Ah 0Bh] 
- -2  + B  h Op. h -ffp-~p. 0-~-. ] ; 

02 [~ _ 2 [OAh[ C0Ah 02Ah 
Op,,Op,, ~0-~- ~ + A h ~  Op~ Op,, c3p. 

O B h  O B h  8 2 B h 

+ - - ~ + B h  / 
ep,, Op,, ap,, Op.] 

We summarize here the derivatives ofA h with respect to 
the various rigid-body parameters. 

~ A  h Mn J 

m = l  j = l  

~ a  h Mn J 

00--;.- r .  y d.mZy'..oV..o; 
m = l  j = l  

02Ah M. S 
-- --4ZC z T,, Z d,,m Z hri h~, C,,mj; 

O W r  a w S  m = 1 j =  1 

o A. , , .  
_ _  - -  r $ 
OOrn 00 s Tn Z dnm Ynr, O Yn.o Cnr, O 

m = l  j = l  

~2 R~ ) 
+ 2z~hs. 00,] 00sn X.m V . .  , 

82Ah M. S 
- -  r $ Ow~ 00 s 2zcT,, Z dnm Z hs Y,,,,ti C.,n/; 

m = l  j = l  

(r,s = 1, 2, 3); 

OR, ,  
Cnm i = cos fin,,O; Vnm j = sin flnmi; yrmi= 2~hj'-Z-A-7~ Xnm; aV', 
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a0~ 
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- R n R n R ~ ,  60o~ 
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c~Rn The normal equations (2) are solved by diagonalizing 
-- R 3 R E R'~; - R~ RPn 2 R~ ; the normal matrix with the Householder method. 

t902 This procedure permits also classification of the 
stationary points of Sin(p). 

602 Rn ( i  0 0 t 
( ~ 0 ~  - R3 R2 --cos 0~ sin 0~ ; 

-s in  0~ --cos 0~] 

602 Rn 
- -  - -  R 3 R~, 2 R " ;  

60o2 

0 sin 0 2 \ 

0 0 /R~;  
1 

0 -cos 0 2] 

O2R,, (-COS 02 

(6002)------ 2 - R~ \--s in 0 2 

602 Rn p3 2 tl 
- R n Rn Rn ; 

60o  60o3 

-cos  0 3 sin 0~ i )  
602 R n 

--I--sin 0 3 --cos 0 3 R 2Rln; 
(600~)2 \ 0  0 

° ° t -sinO~ -cos01  ; 

cos0~ - s i n 0 ~ /  

0 -cos 02t 
0 0 ; 

0 --sin 02] 

602 Rn 
_ R,3 ,,,2 R1; 

- -  l ~ n °  n 

60o 2 60o  

S" =(i 
R, (io': 

\ cos o2 

/ - s in03  - cos03  ~ )  

R~ 3 = / C O S 0 n  3 --sin 0n 3 . 

\ o  0 

The derivatives of Bh with respect to p can be expressed 
in a similar way as for A h. 
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